Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Karbala International Journal of Modern Science ; 8(2):275-291, 2022.
Article in English | Scopus | ID: covidwho-1893686

ABSTRACT

The COVID-19 outbreak has infected millions of people worldwide, but no vaccine has been discovered to combat it efficiently. This research aims to design a multi-epitope vaccine using highly efficient B- and T-cell epitopes from the SARS-CoV-2 Surabaya isolate through a viroinformatic approach. First, the putative epitopes were linked together to develop tertiary structures and then docked with toll-like receptor 4 (TLR-4) that demonstrated a robust interaction with a low eigenvalue of 4.816138 e¡06. Furthermore, the structure's high immunogenic response was observed and successfully cloned into the expression vector pET28a (þ). This implies that the designed vaccine can prove effective in combating SARS-CoV-2. © 2022 University of Kerbala.

2.
Journal of Pharmacy and Pharmacognosy Research ; 10(3):429-444, 2022.
Article in English | EMBASE | ID: covidwho-1885217

ABSTRACT

Context: The SARS-CoV-2 virus is the cause of the COVID-19 pandemic, which is a severe public health crisis worldwide. Aims: To analyze the SARS-CoV-2 isolates of Surabaya and predict ORF1ab polyprotein epitopes through the bioinformatics approach for vaccine candidate development. Methods: Three genomic sequences of Surabaya isolates were obtained from the GISAID, NCBI and PDB Gen-bank databases and MEGA-11 software were used to understand the transformations in the isolates. The IEDB and VaxiJen, AllerTop, and ToxinPred web servers were used to predict B-cell epitopes and analyze their antigenicity, non-allergenicity, non-toxicity, respectively. Moreover, these epitopes were linked by EAAAK for 3D modeling, refinement, and validation through Swiss- Model, Galaxy Refine, and RAMPAGE web tools. Results: The Surabaya isolates, RSDS-RCVTD-UNAIR-49-A, 54-A, and 42-A, had 10, 20, and 16 mutations in nucleotides and depicted a phylogenetically close relationship to isolates of Egypt, Pakistan, and Bangladesh, respectively. A total of 71 sequential Orf1ab B-cell epitopes were predicted, and only three peptides were found to be antigenic, non-allergenic, and non-toxic. These epitopes were linked with the EAAAK linker to develop a 3D refined and validated structure. This construct was docked with TLR-3 receptor by the Cluspro webserver and found a high affinity of ORF1ab+TLR3 due to 15 hydrogen bonds. The construct demonstrated good humoral and cellular immune responses in the C-ImmSim server, and cloning in the expression vector pET28a (+) yielded a colon of 846bp. Conclusions: ORF1ab B-cell epitopes could be useful for developing effective vaccines to combat SARS-CoV-2 infection.

3.
Journal of Pharmacy & Pharmacognosy Research ; 10(3):445-458, 2022.
Article in English | Web of Science | ID: covidwho-1749746

ABSTRACT

Context: The current COVID-19 pandemic has significantly impacted health and socio-economic status worldwide. The only way to combat this situation is to develop an effective vaccine and immunize people around the globe. Aims: To construct a multi-epitope spike glycoprotein-based vaccine from the SARS-CoV-2 Surabaya isolate using a bioinformatics approach. Methods: The spike protein was submitted to IEDB, VaxiJen, AllerTOP, and ToxinPred webservers to predict antigenic, non-allergic, non-toxic, B- and T-cell epitopes. To develop a multi-epitope vaccine, an adjuvant cholera toxin B subunit was linked to B-cell and B-cell with T-cell through EAAAK and GPGPG linkers, respectively. The designed vaccine 3D structure development, refinement, and validation were done through PHYRE2, Galaxy Refine, and RAMPAGE webservers. Moreover, the Cluspro-2.0 webserver was used for the molecular docking of the vaccine designed with TLR3. The vaccine+TLR3 complex was docked with Surfactant protein A as a control to validate the docking results. Finally, immune-simulation and in silico cloning of the vaccine were carried out by C-ImmSim webserver and SnapGene software, respectively. Results: A multi-epitopic vaccine containing B and T-cell was developed using 392 amino acids with a molecular weight of 40825.59 Da. The docking and immunogenicity results of the vaccine met all established parameters for constructing a quality vaccine. Furthermore, the optimized sequence of the vaccine was successfully cloned in expression vector pET 28 a (+) that yielded a colon of 2724 bp. Conclusions: The vaccine's immunogenicity demonstrates its effectiveness against SARS-CoV-2 infection. Further confirmatory testing may therefore be performed as soon as possible in the public interest.

SELECTION OF CITATIONS
SEARCH DETAIL